Efficiently Computing Top-K Shortest Path Join
نویسندگان
چکیده
Driven by many applications, in this paper we study the problem of computing the top-k shortest paths from one set of target nodes to another set of target nodes in a graph, namely the top-k shortest path join (KPJ) between two sets of target nodes. While KPJ is an extension of the problem of computing the top-k shortest paths (KSP) between two target nodes, the existing technique by converting KPJ to KSP has several deficiencies in conducting the computation. To resolve these, we propose to use the best-first paradigm to recursively divide search subspaces into smaller subspaces, and to compute the shortest path in each of the subspaces in a prioritized order based on their lower bounds. Consequently, we only compute shortest paths in subspaces whose lower bounds are larger than the length of the current k-th shortest path. To improve the efficiency, we further propose an iteratively bounding approach to tightening lower bounds of subspaces. Moreover, we propose two index structures which can be used to reduce the exploration area of a graph dramatically; these greatly speed up the computation. Extensive performance studies based on real road networks demonstrate the scalability of our approaches and that our approaches outperform the existing approach by several orders of magnitude. Furthermore, our approaches can be immediately used to compute KSP. Our experiment also demonstrates that our techniques outperform the state-of-the-art algorithm for KSP by several orders of magnitude.
منابع مشابه
Efficient SimRank Computation via Linearization
SimRank, proposed by Jeh and Widom, provides a good similarity measure that has been successfully used in numerous applications. While there are many algorithms proposed for computing SimRank, their computational costs are very high. In this paper, we propose a new computational technique, “SimRank linearization,” for computing SimRank, which converts the SimRank problem to a linear equation pr...
متن کاملProcessing Top-k Join Queries
We consider the problem of efficiently finding the top-k answers for join queries over web-accessible databases. Classical algorithms for finding top-k answers use branch-and-bound techniques to avoid computing scores of all candidates in identifying the top-k answers. To be able to apply such techniques, it is critical to efficiently compute (lower and upper) bounds and expected scores of cand...
متن کاملComputing the K Shortest Paths: A New Algorithm and an Experimental Comparison
A new algorithm to compute the K shortest paths (in order of increasing length) between a given pair of nodes in a digraph with n nodes and m arcs is presented. The algorithm recursively and efficiently solves a set of equations which generalize the Bellman equations for the (single) shortest path problem and allows a straightforward implementation. After the shortest path from the initial node...
متن کاملDistanceJoin: Pattern Match Query In a Large Graph Database
The growing popularity of graph databases has generated interesting data management problems, such as subgraph search, shortest-path query, reachability verification, and pattern match. Among these, a pattern match query is more flexible compared to a subgraph search and more informative compared to a shortest-path or reachability query. In this paper, we address pattern match problems over a l...
متن کاملLink Prediction Using Top-k Shortest Distances
In this paper, we apply an efficient top-k shortest distance routing algorithm to the link prediction problem and test its efficacy. We compare the results with other base line and state-of-the-art methods as well as with the shortest path. Our results show that using top-k distances as a similarity measure outperforms classical similarity measures such as Jaccard and Adamic/Adar.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015